One-to-one piecewise linear mappings over triangulations
نویسنده
چکیده
We call a piecewise linear mapping from a planar triangulation to the plane a convex combination mapping if the image of every interior vertex is a convex combination of the images of its neighbouring vertices. Such mappings satisfy a discrete maximum principle and we show that they are oneto-one if they map the boundary of the triangulation homeomorphically to a convex polygon. This result can be viewed as a discrete version of the RadóKneser-Choquet theorem for harmonic mappings, but is also closely related to Tutte’s theorem on barycentric mappings of planar graphs.
منابع مشابه
Convex combination maps over triangulations, tilings, and tetrahedral meshes
In a recent paper by the first author, a simple proof was given of a result by Tutte on the validity of barycentric mappings, recast in terms of the injectivity of piecewise linear mappings over triangulations. In this note, we make a short extension to the proof to deal with arbitrary tilings. We also give a simple counterexample to show that convex combination mappings over tetrahedral meshes...
متن کاملPiecewise Linear Topology, Evolutionary Algorithms, and Optimization Problems
Schemata theory, Markov chains, and statistical mechanics have been used to explain how evolutionary algorithms (EAs) work. Incremental success has been achieved with all of these methods, but each has been stymied by limitations related to its less-thanglobal view. We show that moving the question into topological space helps in the understanding of why EAs work. Purpose. In this paper we use ...
متن کاملOptimal N-term approximation by linear splines over anisotropic Delaunay triangulations
Anisotropic triangulations provide efficient geometrical methods for sparse representations of bivariate functions from discrete data, in particular from image data. In previous work, we have proposed a locally adaptive method for efficient image approximation, called adaptive thinning, which relies on linear splines over anisotropic Delaunay triangulations. In this paper, we prove asymptotical...
متن کاملConstruction of wavelets and prewavelets over triangulations
Constructions of wavelets and prewavelets over triangulations with an emphasis of the continuous piecewise polynomial setting are discussed. Some recent results on piecewise linear prewavelets and orthogonal wavelets are presented. c © 2003 Elsevier Science B.V. All rights reserved.
متن کاملParameterization of Triangulations and Unorganized Points
A parameterization of a surface is a one-to-one mapping from a parameter domain to the surface. This paper studies the construction of piecewise linear parameterizations of triangulations and of discrete parameterizations of sets of unorganized points. Such parameterizations are useful tools for the approximation of triangulations by smoother surfaces as well as for the construction of triangul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 72 شماره
صفحات -
تاریخ انتشار 2003